

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code:Electromagnetic Fields (19EE0207)

Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & II-Sem

Regulation: R19

UNIT –I INTRODUCTION TO VECTOR CALCULUS

 a Convert point P(1,3,5) from cartesian to cylindrical and sphordinates system. b Given the two points A (X=2, Y=3, Z=-1) and B= (r=4, φ=120°). Find the spherical co-ordinates of A and cartesian coordinates of B Point P and Q are located at (0,2,4) and (-3,1,5) calculated: (1). The Position vector P, (2). The distance vector from P at The distance between P and Q and (4). A vector parallel to magnitude of 10. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, -200). 	θ =25 and p-ordinates and Q, (3). p PQ with as. Given -2) po-ordinate	[L4][C01] [L4][C01] [L1][C01] [L4][C01] [L1][C01]	[6M] [6M] [12M] [12M] [6M]
 φ=120°). Find the spherical co-ordinates of A and cartesian co of B Point P and Q are located at (0,2,4) and (-3,1,5) calculated: (1). The Position vector P, (2). The distance vector from P at The distance between P and Q and (4). A vector parallel to magnitude of 10. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, - 	o-ordinates nd Q, (3). o PQ with ns. Given -2) co-ordinate	[L1][CO1] [L4][CO1] [L1][CO1]	[12M] [12M]
 of B Point P and Q are located at (0,2,4) and (-3,1,5) calculated: (1). The Position vector P, (2). The distance vector from P at The distance between P and Q and (4). A vector parallel to magnitude of 10. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, - 	nd Q, (3). PQ with as. Given -2) co-ordinate	[L4][CO1] [L1][CO1]	[12M]
 Point P and Q are located at (0,2,4) and (-3,1,5) calculated: (1). The Position vector P, (2). The distance vector from P at The distance between P and Q and (4). A vector parallel to magnitude of 10. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, - 	nd Q, (3). p PQ with ns. Given -2) co-ordinate	[L4][CO1] [L1][CO1]	[12M]
 (1). The Position vector P, (2). The distance vector from P at The distance between P and Q and (4). A vector parallel to magnitude of 10. 3. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, - 	nd Q, (3). p PQ with ns. Given -2) co-ordinate	[L4][CO1] [L1][CO1]	[12M]
 The distance between P and Q and (4). A vector parallel to magnitude of 10. 3. Express vector B in cartesian and cylindrical system B= 10/r a_r + r cosθ a_θ + a_φ. Find the B at (-3,4,0) and (5,π/2, - 	PQ with ns. Given -2) co-ordinate	[L1][CO1]	
magnitude of 10. 3. Express vector B in cartesian and cylindrical system $B = 10/r a_r + r \cos\theta a_\theta + a_\phi$. Find the B at (-3,4,0) and (5, $\pi/2$, -	ns. Given -2) co-ordinate	[L1][CO1]	
3. Express vector B in cartesian and cylindrical system $B = 10/r a_r + r \cos\theta a_\theta + a_\phi$. Find the B at (-3,4,0) and (5, $\pi/2$, -	-2) co-ordinate	[L1][CO1]	
$B = 10/r a_r + r \cos\theta a_\theta + a_\phi$. Find the B at (-3,4,0) and (5, $\pi/2$, -	-2) co-ordinate	[L1][CO1]	
	co-ordinate		[6M]
			[6M]
4. a Transform the vector field W=10 $a_x - 8 a_y + 6 a_z$ to cylindrical c	e obtain B		
system at point P (10,-8, 6)	e obtain B		
b Express $B = r^2 a_r + \sin \theta a_{\phi}$ in the cartesian co-ordinates. Hence		[L4][CO1]	[6M]
at P (1,2,3)			54.03.53
5 If $B = y a_x + (x+z) a_y$ and a point Q is located at (-2,6,3) exprise		[L4][CO1]	[12M]
Point Q in cylindrical and spherical co-ordinates and 2) B in	n spherical		
6 a Given point P (-2,6,3) and A=y $a_x + (x+z) a_y$. Express A in C	Tulindrical	[L4][CO1]	[6M]
6 a Given point P (-2,6,3) and A=y $a_x + (x+z) a_y$. Express A in C coordinates.	_yilliulical	[L4][COI]	
b Transform the vector $A=3i-2j-4K$ at P (x=2, y=3, Z=3) to c	cylindrical	[L4][CO1]	[6M]
coordinates $(x-2)$ $(x-2)$ $(x-2)$ $(x-2)$ $(x-2)$ $(x-2)$	e yillidi ledi		
7 a Given the two coplanar vectors $A=3 a_x + 4 a_y$ - 5 a_z and $B=-6a$	$a_{x} + 2 a_{y} + 4$	[L4][CO1]	[6M]
a_z . Obtain the unit vector normal to the plane containing the	•	4	
and B			
b The Three fields are given by $A=2a_x - a_z$, $B=2a_x - a_y + 2a_z$, $C=2a_x - a_y + 2a_z$, $C=2a_x - a_y - a_y + 2a_z$, $C=2a_x - a_y $	$2a_x - 3a_y + a_z$	[L4][CO1]	[6M]
. Find the scalar and vector triple product.			
8 Determine the divergence of these vector fields:		[L4][CO1]	[12M]
i).P=x ⁻² yz $a_x + xz a_z$, ii) Q= r sin $\phi a_r + r^2 z a_{\phi} + z \cos \phi a_z a_{\phi}$	and iii) T=		
$(1/r^2)\cos\theta a_r + r\sin\theta\cos\phi a_\theta + \cos\theta a_\phi$			
9 Find the gradient of the following scalar fields		[L4][CO1]	[12M]
i) $V = e^{-z} \sin 2x \cosh y$, ii) $U = r^2 z \cos \phi$ and iii) $W = 10r \sin^2 \theta c$			
10 Determine the curl of the vector fields:		[L4][CO1]	[12M]
i).P=x ² yz $a_x + xz a_z$, ii) Q= r sin $\phi a_r + r^2 z a_{\phi} + z \cos \phi a_z$ and iii) T= $(1/r^2)$		
$\cos \theta a_r + r \sin \theta \cos \phi a_{\theta} + \cos \theta a_{\phi}$			

<u>UNIT –II</u> <u>STATIC ELECTRIC FIELD</u>

1		State and smalling Coroland to have indicating all and a discretion of monothing in	II 11[CO01	
1	а	State and explain Coulomb's law indicating clearly the units of quantities in	[L1][CO2]	[6M]
		the equation of force?		
	b	State and prove Gauss's law and write limitations of Gauss's law?	[L2][CO2]	[6M]
2		Three concentrated charges of 0.25 μ C are located at the vertices of an	[L4][CO2]	[12M]
		equilateral triangle of 10 cm side . Find the magnitude and direction of the		
		force on one charge due to other two charges.		
3.	a	Determine the Electric filed intensity at P(-0.2, 0, -2.3) m due to a point	[L4][CO2]	[6M]
		charge of 5 nc at Q (0.2,0.1, -2.5) m in air.		
	b	An infinitely long uniform line charge is located at y=3, Z=5. If $\rho_L = 30$ n	[L4][CO2]	[6M]
		C/m, find the filed intensity E at i) origin , ii) $P(0,6,1)$ and iii) $P(5,6,1)$		
4.	а	Line charge density ρ_L = 24 n C/m is located in free space on the line y=1	[L4][CO2]	[6M]
		and $Z=2$ m	[][]	
	b	Find E at the point $P(6,-1,3)$, b) What point charge Q_a should be located at A	[L4][CO2]	[6M]
		(-3,4,1) to make y component of total E zero at point P?		
5	a	Find E at (0,0,2) m due to charged circular disc in x-y plane with $\rho_s=20$ n	[L4][CO2]	[6M]
		C/m^2 and radius 1m.		
	b	A circular disc of 10 cm radius is charged uniformly with total charge of	[L4][CO2]	[6M]
		100μc. Find E at a point 20cm on its axis.		
6		The Electric flux density is given as $D = (r/4) a_r n C/m^2$ in free space.	[L4][CO2]	[12M]
		Calculate: The Electric field intensity at $r=0.25$ m, The total charge within a subara of $r=0.25$ m		
7		sphere of r=0.25 m Given that A= 30 e ^{-r} a_r -2 z a_z in the cylindrical co-ordinates. Evaluate both	[L4][CO2]	[12M]
'		sides of the divergence theorem for the volume enclosed by $r=2$, $z=0$ and		
		Z=5		
8	a	An electric potential is given by V=(60 sin θ /r ²) v . Find V and E at	[L4][CO2]	[6M]
		P(3,60°,25°)		
	b	In free space $V = x^2y(z+3)$. Find E at (3, 4, -6) and The charge within the	[L4][CO2]	[6M]
		cube 0 <x,y,z<1.< th=""><th></th><th></th></x,y,z<1.<>		
9	a	The potential field in free space is given by $V=(50/r)$, a <r< (spherical)<="" b="" th=""><th>[L4][CO2]</th><th>[6M]</th></r<>	[L4][CO2]	[6M]
	_	show that $\rho_v=0$ for a <r </r s and find the energy stored in the region a <r </r s		
	b	Two pint charges 1.5nC at $(0,0,0.1)$ and -1.5nC at $(0,0,-0.1)$ are in free space.	[L4][CO2]	[6M]
		Treat the two charges as a dipole at the origin and find the potential at $r(0, 2, 0, 0, 4)$		
10	0	p(0.3,0,0.4) What is the relation between electric flux density and electric field intensity	[L1][CO2]	[4M]
	a h			
	b	Define dipole moment?	[L1][CO2]	[2M]
	C	Define an electric dipole?	[L1][CO2]	[2M]
	d	State vector form of coulombs law?	[L1][CO2]	[2M]
	e	Derive Maxwell second equation?	[L1][CO2]	[2M]

<u>UNIT –III</u>

CONDUCTORS, DIELECTRICS AND CAPACITANCE

-	r		FT 411 CO 45	L (2 - 22
1	а	Derive the continuity equation. What is its physical significance?	[L1][CO3]	[6M]
	b	Derive the point form of ohms law?	[L1][CO3]	[6M]
2		Explain the boundary conditions of two perfect dielectrics materials?	[L1][CO3]	[12M]
3		Explain the boundary conditions between conductor and free space?	[L1][CO3]	[12M]
4	a	In cylindrical coordinates J=10 e ^{-100r} $a_{\phi} A/m^2$. Find the current crossing through the region 0.01 <r<0.02 0<z<1="" <math="" and="" intersection="" m="" of="" region="" the="" this="" with="">\phi = constant plane</r<0.02>	[L4][CO3]	[6M]
	b	An aluminum conductor is 2000 ft long and has a circular cross section with a diameter of 20 mm. If there is a DC voltage of 1.2 V between the ends . Find a) The current density b) The current , C power dissipated form the l=knowledge of circuit theory. Assume σ =3.82 *10 ⁷ mho/m for aluminum .	[L4][CO3]	[6M]
5	a	Find the magnitude of D and P for a dielectric material in which E=0.15 mV/m and χ =4.25	[L4][CO3]	[6M]
	b	Find the polarization in dielectric material with $\epsilon_r = 2.8$ if D=3*10 ⁻⁷ C/m ²	[L4][CO3]	[6M]
6		Explain the phenomenon of polarization when a dielectric slab is subjected to an electric field?	[L4][CO3]	[12M]
7	a	Derive the expression for parallel plate capacitor and capacitance of a co- axial cable?	[L4][CO3]	[6M]
	b	A parallel plate capacitor has an area of 0.8 m ² separation of 0.1 mm with a dielectric for which $\epsilon_r = 1000$ and a field of 10^6 V/m. Calculate C and V	[L4][CO3]	[6M]
8		Find V at P (2,1,3) for the field of two coaxial conducting cones, with V=50 V at θ =30 and V=20 V at θ =50.	[L4][CO3]	[12M]
9		Two parallel conducting disc are separated by distance 5 mm at $z=0$ and $z=5$ mm. If V=0 and V=100 v at $z=5$ mm, find the charge densities on the disc.	[L4][CO3]	[12M]
10	a	Determine whether or not the following potential fields satisfy the Laplace's equation $V=x^2-y^2+z^2$ ii) $V=r\cos\phi+z$	[L2][CO3]	[6M]
	b	Derive Laplace's and Poisson's Equation	[L1][CO3]	[6M]

R19

<u>UNIT –IV</u>

STATIC MAGNETIC FIELDS

1		Using Biot-savart's law. Find \vec{H} and \vec{B} due conductor of finite length?	[L1][CO4]	[12M]
2	a	Explain maxwell's second equation?	[L1][CO4]	[6M]
	b	State and explain ampere's circuital law?	[L1][CO4]	[6M]
3		Evaluate both sides of the stokes theorem for the filed H=6xy $a_x -3y^2 a_y$ A/m and the rectangular path around the region 2 <x<5, -1<y<1,="" <math="" be="" direction="" ds="" let="" of="" positive="" the="" z="0.">a_z.</x<5,>	[L4][CO4]	[12M]
4	a	Find the flux passing the portion of the plane $\phi = \pi/4$ defined by 0.01 <r<0.05 0<z<2="" 2.5="" <math="" a="" along="" and="" axis="" current="" filament="" in="" is="" m="" m.="" of="" the="" z="">a_z direction in free space.</r<0.05>	[L4][CO4]	[6M]
	b	In cylindrical coordinates B= $(2.0/r)$ a _{ϕ} tesla. Determine the magnetic flux ϕ crossing the plane surface defined by 0.5 <r<2.5 0<z<2m.<="" and="" m="" td=""><td>[L4][CO4]</td><td>[6M]</td></r<2.5>	[L4][CO4]	[6M]
5		In cylindrical co-ordinates A=50 $r^2 a_z$ wb/m is a vector magnetic potential in a certain region of free space. Find H, B, J and using J find the total current I crossing the surface 0 <r<1, 0<<math="">\phi<2π and Z=0.</r<1,>	[L4][CO4]	[12M]
6	a	A Point charge of Q=-1.2 C has a velocity V= $(5 a_x + 2 a_y - 3a_z)m/s$. Find the magnitude of the force exerted on the charge if i) E= -18 a_x +5 a_y -10 a_z V/m and ii) B=-4 a_x +4 a_y +3 a_z T	[L4][CO4]	[6M]
	b	A magnetic field $B= 3.5*10^{-2} a_z$ exerts a force on a 0.3 m long conductor along x axis. IF a current of 5 A flows in $-a_x$ direction, determine what force must be applied to hold conductor in position.	[L4][CO4]	[3 M]
	c	Determine the force per meter length between two long parallel wires A and B separated by distance 5 cm in air and carrying currents of 40 A in the same direction.	[L4][CO4]	[3M]
7		A rectangular loop in Z=0 plane has corners at $(0,0,0)$, $(1,0,0)$, $(1,2,0)$ and $(0,2,0)$. The loop carries a current of 5 A in a_x direction. Find the total force and torque on the loop produced by the magnetic field B=2 $a_x+2a_y-4a_z$ wb/m ² .	[L4][CO4]	[12M]
8		Derive the expression for self-inductance of solenoid, toroid and coaxial cable	[L1][CO4]	[12M]
9	a	Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is in air.	[L4][CO4]	[6M]
	b	Find inductance per unit length of a co-axial cable if radius of inner and outer conductors are 1 mm and 3 mm respectively. Assume relative permeability unity.	[L4][CO4]	[6M]
10		Calculate the inductance of a 10 m length of coaxial cable filled with a material for which $\mu_r = 80$ and radii inner and outer conductors are 1 mm and 4 mm respectively.	[L4][CO4]	[12M]

R19

<u>UNIT –V</u>

TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

1		Write Maxwell's equation in good conductors for time varying fields and static	[L1][CO5]	[12M]
		fields both in differential and integral form?		
2		Explain faradays law of electromagnetic induction and there from derive maxwell's	[L1][CO5]	[12M]
		equation in differential and integral form?		
3		Derive the equation of Continuity for time varying fields?	[L1][CO5]	[12M]
4		Derive an expression for motional and transformer induced emf?	[L1][CO5]	[12M]
5		What is displacement current? Explain physical significance of displacement	[L1][CO5]	[12M]
		current?		
6		Derive expressions for integral and point forms of poynting Theorem?	[L1][CO5]	[12M]
7		Explain faradays law of electromagnetic induction and derive the expression for	[L1][CO5]	[12M]
		induced e.m.f		
8	a	Define skin depth?	[L1][CO5]	[2M]
	b	Define displacement current?	[L1][CO5]	[2M]
	c	State Faraday's law of electromagnetic induction?	[L1][CO5]	[2M]
	d	Write Maxwell equations in time varying fields?	[L1][CO5]	[4M]
	e	Define pointing vector?	[L1][CO5]	[2M]
9		A Parallel plate capacitor with plate area of 5 cm^2 and plate separation of	[L4][CO5]	[12M]
		3mm has a Voltage of 50 sin 10^3 t volts applied to its plates. Calculate the		
		displacement current Assuming $\varepsilon = 2\varepsilon_0$		
10		An area of 0.65 m^2 in the plane Z=0 encloses a filamentary conductor. Find	[L4][CO5]	[12M]
		the induced voltage if B= 0.05 cos 10^3 t (a_y+a_z)/ $\sqrt{2}$ tesla.		

Preparedby: 1. Dr. J.Gowrishankar Professor/EEE 2. Mrs.Sravanthi Assistant Professor/EEE